
Abstract

Automated Voice Processing Systems (VPSes) are
becoming increasingly widespread. We see them not
only in voice assistants such as Amazon Alexa, Google
Assistant, and Apple Siri, but also in devices that are
more user friendly to the visually impared or elderly
and in other devices, such as required by the “Internet
of Things” where traditional interfaces are inadequate
or impractical. These systems are capable of initiating
virtually any command that a mobile phone can
generate, which makes their security especially
important. Recent work has demonstrated a number of
attacks against VPSes, most exploiting differences
between how humans and deep learning models
process speech. Our understanding of these
differences, however, is limited, so that we do not
understand why some attacks succeed when similar
attacks fail. Our research seeks to shed light on how
VPSes “reason”, in order to gain a better understanding
of the factors they use during classification, thus
understanding potential new attacks and defenses.

The behavior of deep neural networks is based on
the values of (sometimes billions of) parameters.
Training a network determines the values of these
parameters. Training data (known input-output pairs)
is fed through the network, and parameters adjusted
until the difference between the resulting network
outputs and the true outputs are minimized. Though
the mathematics of this optimization process is well
understood, the extremely large number of
parameters means that, once trained, the “reasoning”
behind why the network decides to classify a specific
input as it does is relatively opaque. Explanation
methods seek to better understand model
“reasoning”.

Understanding the “Reasoning” of Automated
Voice Processing Systems

André Shannon1, Nikita Morozov1, Angela Stefanovska1, Christ Athiogbey1, Vi Pham1, Grant Szajda1, Oheneba Berko1

Dr. Szajda1, Daniel Capecci2, Hadi Abdullah2, Patrick Traynor2

1University of Richmond, 2University of Florida

Applying LIME to VPSes comes with many
difficulties. Grouping frequencies into bins makes
generating approximations more computationally
feasible. There is a tradeoff between having a more
accurate model with more bins and time spent
computing the model. We tried many different
binning methods: fixed numbers of evenly spaced
bins, overlapping bins, logarithmically spaced bins,
and even basing the bins on peaks in the intensities
of the frequencies.

Once approximating linear models were
generated, we used R squared (R2) and Mean
Standard Error (MSE) to evaluate how well the
linear models locally approximated the actual
model. R2 compares variance between predicted
and actual values to total variance in outputs and
MSE is the average of the squared differences
between the actual and predicted values. For both
of these scoring metrics, our explanations were
consistent, but performed less well than we
expected. In order to explain this, we ran
experiments to determine whether our methods for
evaluating the results were sound, and whether the
use of linear models was sufficient to capture the
behavior of the original classifier, even in small
regions of the input space.

To test the latter, we began implementation of a
method that employs a non-linear approximation of
the classifier. This new explanation method, LEMNA,
uses a Gaussian mixture model to locally
approximate the original classifier. LEMNA also
better captures feature dependencies by effectively
grouping similar coefficients. Unfortunately, we did
not finish our LEMNA experiments before summer
research ended.

An audio sample is collected by periodically measuring the amplitude of sound waves. Thus an audio
sample is just a sequence of amplitudes. These amplitudes are pre-processed, during which noise is filtered
out along with frequencies outside the range of human perception. The resulting sequence values are broken
into overlapping time frames (e.g., of duration 20ms), which are then fed, in order, into the feature extraction
phase. During the feature extraction phase, spectral (frequency) characteristics of each frame are captured
and processed further, in order to better mimic the way in which humans perceive audio (e.g., we distinguish
between low frequencies much better than between high). The resulting feature vectors are then fed to a
deep recurrent neural network, which outputs a single character for each input frame. The sequence of
characters is then decoded and fed to a language model which generates the final word sequence.

Applying LIME

What we Found

For the explanations we did generate,
we were surprised at how different they
were, even when explaining the same
character in the same word but with
different people saying the word. We were
looking for a single “catalog” entry of the
features that cause the classification to be
a specific character, but later realized that
the characteristics of the feature space are
such that there are a multitude of
“catalog” entries at the least.

Though straightforward in theory, the practical application of
LIME can be tricky. Several details appropriate to the application domain
must be chosen. This can by itself take several months, as potential
choices are implemented and tested for efficacy. Once application
details are set, LIME generates linear approximations by sampling inputs
near the input under consideration. These samples are fed through the
original classifier. The samples, along with the outputs generated by the
classifier, are used as training data for the approximating linear model.

Generating sufficient samples to achieve a reasonable approximation
can be difficult, as the input space can have high dimension. To avoid
this, we group frequencies together in “bins”.

The intensities of frequencies will look something like the figure
at right (top). To create a similar sample slightly different than the
original, we set a small, random number of bins to zero. We call this
“perturbing” the input. We make around 2000 perturbations, classify
them all, and use that data to create the linear model.

Explanation Methods

Voice Processing Pipeline

LIME is an explanation method that, given a
specific input, seeks to explain the
classification of that input by using a linear
approximation of the model behavior near the
input. For input x with feature vector (x

1
, x

2
,

… , x
n
), and model f, such a linear

approximation would have the form:

f(x) ≈ 𝛽
1
x

1
 + 𝛽

2
x

2
 + … + 𝛽

n
x

n

where the beta coefficients are fixed and
determine the linear model. The value of
approximating f in this way is that the relative
magnitudes of the beta coefficients determine
which features of x drive its classification.

LIME

References
Hadi Abdullah, Kevin Warren, Vincent Bindschaedler, Nicolas Papernot,

and Patrick Traynor, SoK: The Faults in our ASRs: An Overview of
Attacks against Automatic Speech Recognition and Speaker
Identification Systems. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy, May 2021, 730-747.

Wenbo Guo, Dongliang Mu, JunXu, Purui Su, Gang Wang, and Xinyu
Xing. LEMNA: Explaining Deep Learning Based Security
Applications. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18),
364–379.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should
I Trust You?”: Explaining the Predictions of Any Classifier. In
Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Aug. 2016,1135–1144.

Challenges

