
Abstract

Automated Voice Processing Systems (VPSes) are 
becoming increasingly widespread. We see them not 
only in voice assistants such as Amazon Alexa, Google 
Assistant, and Apple Siri, but also in devices that are 
more user friendly to the visually impared or elderly 
and in other devices, such as required by the  “Internet 
of Things”  where traditional interfaces are inadequate 
or impractical. These systems are capable of initiating 
virtually any command that a mobile phone can 
generate, which makes their security especially 
important.  Recent work has demonstrated a number of 
attacks against VPSes, most exploiting differences 
between how humans and deep learning models 
process speech.  Our understanding of these 
differences, however, is limited, so that we do not 
understand why some attacks succeed when similar 
attacks fail. Our research seeks to shed light on how 
VPSes “reason”, in order to gain a better understanding 
of the factors they use during classification, thus 
understanding potential new attacks and defenses.

The behavior of deep neural networks is based on 
the values of (sometimes billions of) parameters.  
Training a network determines the values of these 
parameters.  Training data (known input-output pairs) 
is fed through the network, and parameters adjusted 
until the difference between the resulting network 
outputs and the true outputs are minimized.  Though 
the mathematics of this optimization process is well 
understood, the extremely large number of 
parameters means that, once trained, the “reasoning” 
behind why the network decides to  classify a specific 
input as it does is relatively opaque.   Explanation 
methods seek to better understand model 
“reasoning”.
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Applying LIME to VPSes comes with many 
difficulties. Grouping frequencies into bins makes 
generating approximations more computationally 
feasible. There is a tradeoff between having a more 
accurate model with more bins and time spent 
computing the model. We tried many different 
binning methods: fixed numbers of evenly spaced 
bins, overlapping bins, logarithmically spaced bins, 
and even basing the bins on peaks in the intensities 
of the frequencies.

Once approximating linear models were 
generated, we used R squared (R2) and Mean 
Standard Error (MSE) to evaluate how well the 
linear models locally approximated the actual 
model. R2 compares variance between predicted 
and actual values to total variance in outputs and 
MSE is the average of the squared differences 
between the actual and predicted values. For both 
of these scoring metrics, our explanations were 
consistent, but performed less well than we 
expected. In order to explain this, we ran 
experiments to determine whether our methods for 
evaluating the results were sound, and whether the 
use of linear models was sufficient to capture the 
behavior of the original classifier, even in small 
regions of the input space.  

To test the latter, we began implementation of  a 
method that employs a non-linear approximation of 
the classifier. This new explanation method, LEMNA, 
uses a Gaussian mixture model to locally 
approximate the original classifier. LEMNA also 
better captures feature dependencies by effectively 
grouping similar coefficients. Unfortunately, we did 
not finish our LEMNA experiments before summer 
research ended.

An audio sample is collected by periodically measuring the amplitude of sound waves. Thus an audio 
sample is just a sequence of amplitudes. These amplitudes are pre-processed, during which noise is filtered 
out along with frequencies outside the range of human perception.  The resulting sequence values are broken 
into overlapping time frames (e.g., of duration 20ms), which are then fed, in order, into the feature extraction 
phase. During the feature extraction phase, spectral (frequency) characteristics of each frame are captured 
and processed further, in order to better mimic the way in which humans perceive audio (e.g., we distinguish 
between low frequencies much better than between high).  The resulting feature vectors are then fed to a 
deep recurrent neural network, which outputs a single character for each input frame.  The sequence of 
characters is then decoded and  fed to a language model which generates the final word sequence.

Applying LIME

What we Found

For the explanations we did generate, 
we were surprised at how different they 
were, even when explaining the same 
character in the same word but with 
different people saying the word. We were 
looking for a single “catalog” entry of the 
features that cause the classification to be 
a specific character, but later realized that 
the characteristics of the feature space are 
such that there are a multitude of 
“catalog” entries at the least.

Though straightforward in theory, the practical application of 
LIME can be tricky. Several details appropriate to the application domain 
must be chosen. This can by itself take several months, as potential 
choices are implemented and tested for efficacy. Once application 
details are set, LIME generates linear approximations by sampling inputs 
near the input under consideration. These samples are fed through the 
original classifier. The samples, along with the outputs generated by the 
classifier, are used as training data for the approximating linear model. 

Generating sufficient samples to achieve a reasonable approximation 
can be difficult, as the input space can have high dimension. To avoid 
this, we group frequencies together in “bins”. 

The intensities of frequencies will look something like the figure 
at right (top). To create a similar sample slightly different than the 
original, we set a small, random number of bins to zero. We call this 
“perturbing” the input.  We make around 2000 perturbations, classify 
them all, and use that data to create the linear model.

Explanation Methods

Voice Processing Pipeline

LIME is an explanation method that, given a 
specific input, seeks to explain the 
classification of that input by using a linear 
approximation of the model behavior near the 
input.  For input x with feature vector (x

1
, x

2
, 

… , x
n
), and model f, such a linear 

approximation would have the form:

f(x) ≈ 𝛽
1
x

1
 + 𝛽

2
x

2
 + … + 𝛽

n
x

n

where the beta coefficients are fixed and 
determine the linear model.  The value of 
approximating f in this way is that the relative 
magnitudes of the beta coefficients determine 
which features of x drive its classification.
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